Semidefinite spectral clustering
نویسندگان
چکیده
Multi-way partitioning of an undirected weighted graph where pairwise similarities are assigned as edge weights, provides an important tool for data clustering, but is an NP-hard problem. Spectral relaxation is a popular way of relaxation, leading to spectral clustering where the clustering is performed by the eigen-decomposition of the (normalized) graph Laplacian. On the other hand, semidefinite relaxation, is an alternative way of relaxing a combinatorial optimization, leading to a convex optimization. In this paper we employ a semidefinite programming (SDP) approach to the graph equipartitioning for clustering, where sufficient conditions for strong duality hold. The method is referred to as semidefinite spectral clustering, where the clustering is based on the eigen-decomposition of the optimal feasible matrix computed by SDP. Numerical experiments with several data sets, demonstrate the useful behavior of our semidefinite spectral clustering, compared to existing spectral clustering methods.
منابع مشابه
Spectral and Semidefinite Relaxation of the CLUHSIC Algorithm
CLUHSIC is a recent clustering framework that unifies the geometric, spectral and statistical views of clustering. In this paper, we show that the recently proposed discriminative view of clustering, which includes the DIFFRAC and DisKmeans algorithms, can also be unified under the CLUHSIC framework. Moreover, CLUHSIC involves integer programming and one has to resort to heuristics such as iter...
متن کاملA new theoretical framework for K-means-type clustering
One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). The classical K-means algorithm can be interpreted as a special heuristics for the underlying 0-1 SDP. Moreover, the 0-1 SDP model...
متن کاملApproximating K-means-type Clustering via Semidefinite Programming
One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for several clustering approaches such as normalized k-cut and spectr...
متن کاملAdvanced Optimization Laboratory Title: Approximating K-means-type clustering via semidefinite programming
One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for several clustering approaches such as normalized k-cut and spectr...
متن کاملProbably certifiably correct k-means clustering
Recently, Bandeira [5] introduced a new type of algorithm (the so-called probably certifiably correct algorithm) that combines fast solvers with the optimality certificates provided by convex relaxations. In this paper, we devise such an algorithm for the problem of k-means clustering. First, we prove that Peng and Wei’s semidefinite relaxation of k-means [20] is tight with high probability und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 39 شماره
صفحات -
تاریخ انتشار 2006